Conformal Field Theory and Gravity

Solutions to Problem Set 10 Fall 2024

1. Coordinates and Isometries of AdS

(a) We will take X° and X' to be the timelike coordinates in the embedding spacetime.
Global coordinates:

X% = cosh(p) cos(t), (1)

X' = cosh(p) sin(t), (2)
D41

X' =sinh(p)n’, (7' parameterizes S”~? with Z(ﬁ’)Q =1). (3)
i=2

Global to Global 2:

r = sinh(p) (4)
Conformal coordinates:
cos(t)
X0 = 5
cos(6)’ (5)
sin(t)
X' = 6
cos(6)’ (6)
X' = tan(0)n’ (7)
Note that we require 6 € [0, 7/2).
Poincaré Patch Coordinates:
1 o
X0 = 2 (1+ 2%+ 6 2'a? — 7)), (8)
z
t
Xl == 9
L )
7
Xi=" 10
3 (10)
1 .
XP = % (1— 2% —0ya'a? + 7). (11)
Cosmological coordinates:
X% = sin(T), (12)
X' = cos(T) cosh(r), (13)
X' = cos(T) sinh(r)n’ (14)



(b) Embedding space: SO(2,D —1).
Global: time translations and rotations SO(D — 1).
Conformal: time translations and rotations SO(D).
Poincaré: Poincaré group I1SO(1, D — 2) and dilatations z — Az, t — A, 2" — A\x'.
Cosmological: Hyperboloid group SO(1, D — 1).

(¢) To find all the Killing vectors (KV) of AdS-Poincaré, our strategy is to locate the
conformal Killing vectors (CKV) first, and then pick the KV from them.

Before analysing the details, we can first investigate the nature of the isometry
group of AdS. We can see AdSp as a hyperboloid embedded in R>”~! so it inherits
the isometry group SO(2,D —1).

x2+y2+22+"'—t2—u2:RidS
The (D — 1, 1)-dimension Poincaré patch of AdS has metric:

9 d22 + mjdxidxj 1 9
= 2 = _stﬂam
z z

ds

which is in the same conformal class as Minkowski, therefore, they have the same
set of CKVs. The CKVs of Minkowski correspond to the SO(2, D) algebra. For
A=0,---,D —1, we have CKVs:

PAZ%,
Ky =224 (x%) —.rga;iA,
D:x-((%,

Mg :q,-Aa% —xBé%.

Which of these are isometries of AdS-Poincaré? Or, instead, we can first pick the
ones which aren’t. P,, M.;, K, are not (for i = 0,---,D — 2,z = P~1). Thus the
KVs of AdS-Poincaré are:

K; =22 (z% + mjm> — (22 + njkxjxk) aii’
D = z% + xiaii,
M;; = Z% —xjaxi.

At the boundary z = 0, these become:

-Pi:a”i7
K; = 23" (x - 0) — 2°0;
D=ux-0,

M,;j = xiﬁj - I]al
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These are exactly the CKVs of (D — 1)-dimensional Minkowski spacetime, which
generates the group SO(2,D — 1).

2. Scalar field in AdS

(a)

The separability of the wave function ¢(¢, 6, Q) follows from the form of the Casimir
[0 in AdS. First, use that

1
o = —0u(\/99" v 15
NG (V3 ) (15)
and write g, in the form
_005129 0 0
G = 0 c05129 ) 2(; (16)
0 0 Coglii
where h;; is the metric on the unit S*! sphere. Note that /[g] = S252¢. /Ja.
Thus,
d+1 o d—1
B 9 nad cos®™ 0 sin® "0
0o = — cos” 00; ¢ + g (cosd+1 5 COS 0@(;5)
20 1 y
+ o ——0,(Vhh0;0) (17)
sin“ 0 V]| h|

(.

=Agq-1¢

where we recognized the sphere Laplacian Aga-1¢. This form is precisely of the
form
O=0;,+0, 4+ Oga (18)

The most general solution is given by a linear combination of solutions of the form
A(t)B(0)C(£2). The nice way to obtain solutions is to diagonalize each operator.
We diagonalize 07 in the standard way,

Rop=—we (19)

where w is the energy. The eigenfunctions of Aga-1 are represented in spherical
harmonics Y(Q2) (there are other quantum numbers as well. For example, in the
case d — 1 = 2, there would be m = —/, ..., ¢) which obey the property

Agi Yo(Q) = —€(0 + d — 2)Y,(9) (20)
You may be familiar with the case d — 1 = 2, where Ag: = —J% J2 =/(({ + 1)

After having diagonalized 07 — —w? and Aga-1 — —£({+d —2), ¢ = m>¢ reduces
to

0 +d—2)

1
cos®0 G"(0) + d—G'(Q) + (w2 cos? ) — -~y

ta;G ) G(9) =m*G(0) (21)
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In the mathematica file provided, we find two independent solutions to this equation,
namely

d+0—A d+0—A—-w d
G1(0) = cos™ 2 0 sin®0 LI, ( i 5 —i—u)’ + 5 w,g — A +1, cos? 9)
(22)
(+ A 4+ A — d
Go(0) = cos™ 6 sin‘ 0 2F1< + 2—|—w’ + 5 w,—§+A+1,COSQQ) (23)

These are not the two linearly independent solutions we were looking for, since we
were looking for sin? @ as the last argument of 5 F}. To see what happens, we need
to use hypergeometric function identities (c.f. wikipedia), including

F(e)'(c—a—10)

Fi(a,b;c;2) = Fi(a,b; b+1—c¢1—
2 1(@, ,C,Z) F(C—G)F(C—b)2 1(@, 7a+ + G Z)
Fe)(a+b—c) —ab
1—2)""%F(c— — b1 —a—"b1-—2).
(24)
Choosing a = “5+¢ p = B8=% and ¢ = —¢ + A+ 1, z = cos?0, 1 — z = sin? 6,
this implies that the geometric o F| appearing in Gy can be expressed as
(+ A 4+ A — d
QFl(a,b,C,COSQQ):AQFl( + 2+w, + 5 w,€+§,sin20)
—d+A -/ 2 —d+A—1{— 2 d
—I—Bsirfd*QHQQ 2F1 + twt s + W ,———€+2,Sin29
2 2 2
(25)

where A and B are come constants, independent of #. Plugging this in G5 this
implies that
Gq(0) = AG(0) + BG_(0) (26)

where N, ALy y
Gy = (sin 0)(cos 0)5 F ( +2 v +2 =50+ Sisin?6) (27)
A+2—d—1 A+2—-d—1— d
G_ = (sin0)? 9 (cos )2, Fy ( i 5 i w’ i 5 w; 2—€—§; sin? )
(28)

The same analysis can be carried to G; with the use of the identity o F}(a,b, ¢, z) =
(1 — 2)% % Fi(c — a,c — b,c,z), as it should be, since G, and G_ are already
independent solutions.

At 0 — 0, 9Fy(a,b,c,sin?f) = 1 and d% oFi(a,b,c,sin?§) = 0 (where a, b, ¢ are
arbitrary), and similarily for cos®. So the divergent behaviour of G_ only comes
from (sin §)2~4-1,

d%G\H) ~ (2 — d — 0) sin(8)+0 (29)

Since d > 1 (the case of AdS, is special and we won’t consider it), this diverges
generically as 6 — 0.


https://en.wikipedia.org/wiki/Hypergeometric_function?oldformat=true

(c) The unit vector n' pointing outwards the sphere has a non-zero component nf > 0.
To fix it, we impose the normalization

n*g,n’ =1 = n’ =cosf (30)

The induced metric on the fixed € sphere boundary which we will denote by B is
obtained by setting df = dt = 0 in ds?, thus

ds®|p = tan® 0 h;;da‘de’ (31)

where o are d—1 angles on the unit sphere and h;; is the metric on the unit sphere.
This implies that
l9lg = V/|I] tan®t o (32)

Combining both, this gives

/ d*tan/|g|n’ Z,t:/ d* /|| tan® ! 0 cos O Ty (33)
gd—1 Sd—1

Note that tan? !0 cosf = tan? 260 sinf and sinf — 1 as § — 7/2. Thus, the
condition that it vanishes at the boundary is simply

tan®20 Ty, -0 (0 — 7/2) (34)

Noting that gg; = 0, Ry = 0 (this follows from the fact that AdS;,; is maximally
symmetric, and thus Ry, & g,.), the (8t) component of the stress tensor reads

Tyr = 20p00:6 — VoV ,16° (35)

Using 0;¢ = —w?¢ and T, = tan@ is the only non-vanishing Christoffel with (6¢)
lower indices we obtain

Tpe = —w?0pd* + 2Bw?0ydy* — 26 tan huw?¢? (36)
Thus, the condition can be written as
(tan 6)*2[(1 — 28)0p + 2B tan §]GZ — 0 (0 — 7/2) (37)

We now investigate the behaviour of G, when sinf — 1, cos — 0. Let us define
the arguments of the hypergeometric o F} as
A+l+w A+l—w

b
2 2

a c

|

0+ (38)

which is true in our

—~

One property of the hypergeometric is that, when ¢ < a + b
case), the limit z — 1 reads

I'(e)'(a+b—c)

F ~ (1 — c—a—b
2Fi(a,b,¢,2) ~ (1 - 2) SO0 (30)
Thus as sinf — 1,
2 Y
G2 ~ (sin0)*(cos 0)**(cos® 9)2(c_a_b)F(c) F(a2+ b : )
['(a)?T'(b) (40)

2(d-A) [(c)’T(a+b—c)?
I'(a)2I'(b)?

~ (cosf)



(we dropped sin@ ~ 1). For d,G?, one of the derivatives can hit cos generating
the term

(d—A)—1 I'(c)’T(a+b—c)?

3~ (cos ) 41
0pGZ. ~ (cos ) NOENGE (41)
Thus, the condition (36]) (using (tan ) ~ (cos@)~!) reduces to
_ ['(c)’T(a+b—c)?
0 d—2A+1 42
Note that d —2A +1 < —d + 1, so (cos §)? 22411 — 0o, We thus need
['(c)’l b—c)?
(C) (a + C) — 0 (43)

['(a)?T'(b)?

This is true whenever a or b is a pole of the gamma function (the gamma function
has no zeros), namely

a=-n or b=-n n=0,1,.. (44)
This implies
A+lxtw=-2n (45)
meaning
tw=A+/{+2n (46)

(d) For w to be real, we require A to be real. This means
d2
d2—|—4m2>O:>m22—Z. (47)

Plugging back the AdS radius R, this would give

opr o @
m R > 1 (48)

This is known as the Breitenlohner-Freedman bound.

3. Lowest scalar energy state in AdS

(a) (optional part) The CFT generators are expressed in terms of the SO(d,2) genera-

tors as
D=—Joar1, My =Juw, (49)
Pu = JuO + iJ,u,d+17 Ku = Juo — Z'Ju,dJrl; (50)
with
. 0 0



where X4 are the embedding coordinates which in global coordinates read

X" = Rcostcosh p, (52)
X* = RO sinh p, (53)
X* = —Rsint cosh p. (54)

It’s easiest to express the derivative 9/0t in terms of the /90X (and likewise for
0/0p and V) instead of working the other way around. For instance, we have

o 0X4 0 ) 0 0
%= 9t OXA —Rsmhpm — Rcosht cosh Pyxa (55)
But this is precisely
IR I 9 o
o=~ axe N gxe — ~Nengxe + Xogxam = ihan, (56)
since Xg = —X? and X4,; = — X%, Hence —Jy 4,1 = i0;, as claimed.

Next, if we extend the Q* to cover all of R?, we have

0 X4 9

, 0
aQu:agngA:Rsulhan“7 le,--.,d, (57>

so more properly speaking, we have the S~ !-covariant derivatives

V, = Rsinhp 8;9(” - Q,Q" a)@(y (58)

which indeed obey Q2#V,, = 0. Consequently

. 0 0
Xua—)(y = RSthpQ“W = quu + QNQVQPW’ (59)
so (since the second term is symmetric in p > v)
Juw = —i (Y, — WV,) = M, (60)

Finally, we have

o 9X4 0 : 9, 0 o 9
B = B xR ontsinhog + 0 cosh i —sintsinh
(61)

We are aiming for an expression of the form J,p, expressed purely in terms of the
X . As a first step, we can introduce the operators

0 1

D,=Q,—+——
# “8p+tanhp

Vi (62)
which are somewhat simpler: they can be recast as

D,=R costsinhpQu% + cosh p% — ), sintsinh p% , (63)



0 : 0 0
=X <cost— — smt—) + Rcosh Paxn (64)

0X0 0Xd+1
Moreover 3 5 p
QM tanh pa = _XN (Sin tm + COS tW) . (65)

Using the identity Rcoshp = —e® (X, 4iX4,1), we can therefore write

: 0 ; 0 .0 _ 0
D, —zﬁutanhpa =" {XM (aXO +Z8Xd+1) — (Xo—i—szH)m} ,  (66)

that is to say

: 0
et (’ZD‘u — ZQH tanh pa> = Juo + Z.de_;,_l. (67)

Likewise

: 0 i 0 .0 : 0
DM—FzQHtanhpa =e " {X“ (E?XO _Zc‘?Xd“) — (Xo —L&zﬂ)m} , (68)

that is to say

, 0
—ie” (Du + €2, tanh ,0&) = Juo — iJpdt1. (69)

This agrees precisely with the formulas from the exercise.

The requirement D¢ = A¢ gives
2 B At
@atgzﬁ =A¢p = o(r,t,Q) =e " po(r,Q) (70)

The requirement K,¢ = 0 implies that V,¢ = 0 (independent of the S?~! angular
coordinates), and

(—8, — itanh pdy)gy = 0 => 9 = —Atanhp ¢ (71)
This is solved by

—it A
¢0 o efAlogcoshp _— ¢ x € (72)
cosh p

The change of variables between the two coordinates system is tanh p = sinf —

Coslh = cosf. So we obtained that a scalar operator ¢ which is a primary state
p

of the CFT algebra with dimension A is expressed as

“iA(cos B)A (73)

gbCFT,primary xe

whereas in the last exercise we solved the massive scalar fields in AdS and
obtained that ¢ = e “!'G, (0)Y,(2). Choosing ¢ = 0, w = A,, (lowest energy
state) and Y,y o 1 the solutions reads

—i d . —i
¢AdS,lowest energy state X € Amt(cos 9>Am2Fl (L 07 57 S1H2 9) =€ AMt(COS H)Am (74)

where A, in this exercise was defined as A, = 2(1 + v/1+ 4m?). We see that the
two are the same, upon identifying the CF'T dimension A with the quantity A,,.



