
Conformal Field Theory and Gravity
Solutions to Problem Set 10 Fall 2024

1. Coordinates and Isometries of AdS

(a) We will take X0 and X1 to be the timelike coordinates in the embedding spacetime.
Global coordinates:

X0 = cosh(ρ) cos(t), (1)
X1 = cosh(ρ) sin(t), (2)

X i = sinh(ρ)n̂i, (n̂i parameterizes SD−2 with
D+1∑
i=2

(n̂i)2 = 1). (3)

Global to Global 2:

r = sinh(ρ) (4)

Conformal coordinates:

X0 =
cos(t)
cos(θ)

, (5)

X1 =
sin(t)
cos(θ)

, (6)

X i = tan(θ)n̂i. (7)

Note that we require θ ∈ [0, π/2).
Poincaré Patch Coordinates:

X0 =
1

2z

(
1 + z2 + δijx

ixj − t2
)
, (8)

X1 =
t

z
, (9)

X i =
xi

z
, (10)

XD =
1

2z

(
1− z2 − δijx

ixj + t2
)
. (11)

Cosmological coordinates:

X0 = sin(T ), (12)
X1 = cos(T ) cosh(r), (13)
X i = cos(T ) sinh(r)n̂i. (14)
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(b) Embedding space: SO(2, D − 1).
Global: time translations and rotations SO(D − 1).
Conformal: time translations and rotations SO(D).
Poincaré: Poincaré group ISO(1, D − 2) and dilatations z → λz, t → λt, xi → λxi.
Cosmological: Hyperboloid group SO(1, D − 1).

(c) To find all the Killing vectors (KV) of AdS-Poincaré, our strategy is to locate the
conformal Killing vectors (CKV) first, and then pick the KV from them.
Before analysing the details, we can first investigate the nature of the isometry
group of AdS. We can see AdSD as a hyperboloid embedded in R2,D−1, so it inherits
the isometry group SO(2, D − 1).

x2 + y2 + z2 + · · · − t2 − u2 = R2
AdS

The (D − 1, 1)-dimension Poincaré patch of AdS has metric:

ds2 =
dz2 + ηijdx

idxj

z2
=

1

z2
ds2flat,

which is in the same conformal class as Minkowski, therefore, they have the same
set of CKVs. The CKVs of Minkowski correspond to the SO(2, D) algebra. For
A = 0, · · · , D − 1, we have CKVs:

PA =
∂

∂xA
,

KA = 2xA

(
x · ∂

∂x

)
− x2 ∂

∂xA
,

D = x · ∂

∂x
,

MAB = xA ∂

∂xB
− xB ∂

∂xA
.

Which of these are isometries of AdS-Poincaré? Or, instead, we can first pick the
ones which aren’t. Pz,Mzi, Kz are not (for i = 0, · · · , D − 2, z = xD−1). Thus the
KVs of AdS-Poincaré are:

Pi =
∂

∂xi
,

Ki = 2xi

(
z
∂

∂z
+ xj ∂

∂xj

)
−

(
z2 + ηjkx

jxk
) ∂

∂xi
,

D = z
∂

∂z
+ xi ∂

∂xi
,

Mij = xi ∂

∂xj
− xj ∂

∂xi
.

At the boundary z = 0, these become:

Pi = ∂i,

Ki = 2xi(x · ∂)− x2∂i,

D = x · ∂,
Mij = xi∂j − xj∂i.
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These are exactly the CKVs of (D − 1)-dimensional Minkowski spacetime, which
generates the group SO(2, D − 1).

2. Scalar field in AdS

(a) The separability of the wave function φ(t, θ,Ω) follows from the form of the Casimir
� in AdS. First, use that

�φ =
1
√
g
∂µ(

√
ggµν∂νφ) (15)

and write gµν in the form

gµν =

− 1
cos2 θ 0 0
0 1

cos2 θ 0

0 0 sin2 θ
cos2 θhij

 (16)

where hij is the metric on the unit Sd−1 sphere. Note that
√

|g| = sind−1 θ
cosd+1 θ

√
|h|.

Thus,

�φ = − cos2 θ∂2
t φ+

cosd+1 θ

sind−1 θ
∂r

(
sind−1 θ

cosd+1 θ
cos2 θ∂rφ

)
+

cos2 θ
sin2 θ

1√
|h|

∂i(
√
hhij∂jφ)︸ ︷︷ ︸

=∆
Sd−1φ

(17)

where we recognized the sphere Laplacian ∆Sd−1φ. This form is precisely of the
form

� = �t +�r +�Sd−1 (18)

The most general solution is given by a linear combination of solutions of the form
A(t)B(θ)C(Ω). The nice way to obtain solutions is to diagonalize each operator.
We diagonalize ∂2

t in the standard way,

∂2
t φ = −ω2φ (19)

where ω is the energy. The eigenfunctions of ∆Sd−1 are represented in spherical
harmonics Y`(Ω) (there are other quantum numbers as well. For example, in the
case d− 1 = 2, there would be m = −`, ..., `) which obey the property

∆Sd−1Y`(Ω) = −`(`+ d− 2)Y`(Ω) (20)

You may be familiar with the case d− 1 = 2, where ∆S2 = −J2, J2 = `(`+ 1)

(b) After having diagonalized ∂2
t → −ω2 and ∆Sd−1 → −`(`+d−2), �φ = m2φ reduces

to

cos2 θ G′′(θ) +
d− 1

tan θ
G′(θ) +

(
ω2 cos2 θ − `(`+ d− 2)

tan2 θ

)
G(θ) = m2G(θ) (21)
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In the mathematica file provided, we find two independent solutions to this equation,
namely

G1(θ) = cosd−∆ θ sin` θ 2F1

(
d+ `−∆+ ω

2
,
d+ `−∆− ω

2
,
d

2
−∆+ 1, cos2 θ

)
(22)

G2(θ) = cos∆ θ sin` θ 2F1

(
`+∆+ ω

2
,
`+∆− ω

2
,−d

2
+ ∆+ 1, cos2 θ

)
(23)

These are not the two linearly independent solutions we were looking for, since we
were looking for sin2 θ as the last argument of 2F1. To see what happens, we need
to use hypergeometric function identities (c.f. wikipedia), including

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b+ 1− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b

2F1(c− a, c− b; 1 + c− a− b; 1− z).

(24)

Choosing a = `+∆+ω
2

, b = `+∆−ω
2

and c = −d
2
+ ∆ + 1, z = cos2 θ, 1 − z = sin2 θ,

this implies that the geometric 2F1 appearing in G2 can be expressed as

2F1(a, b, c, cos2 θ) = A 2F1

(
`+∆+ ω

2
,
`+∆− ω

2
, `+

d

2
, sin2 θ

)
+B sin−d−2l+2 θ 2F1

(
−d+∆− `+ ω + 2

2
,
−d+∆− `− ω + 2

2
,−d

2
− `+ 2, sin2 θ

)
(25)

where A and B are come constants, independent of θ. Plugging this in G2 this
implies that

G2(θ) = AG+(θ) +BG−(θ) (26)

where
G+ = (sin θ)`(cos θ)∆2F1(

∆ + `+ ω

2
,
∆+ `− ω

2
; `+

d

2
; sin2 θ) (27)

G− = (sin θ)(2−d−`)(cos θ)∆2F1(
∆ + 2− d− `+ ω

2
,
∆+ 2− d− `− ω

2
; 2−`−d

2
; sin2 θ)

(28)
The same analysis can be carried to G1 with the use of the identity 2F1(a, b, c, z) =
(1 − z)c−a−b

2F1(c − a, c − b, c, z), as it should be, since G+ and G− are already
independent solutions.
At θ → 0, 2F1(a, b, c, sin2 θ) = 1 and d

dθ 2F1(a, b, c, sin2 θ) = 0 (where a, b, c are
arbitrary), and similarily for cos∆. So the divergent behaviour of G− only comes
from (sin θ)2−d−l,

d

dθ
G−|θ→0 ∼ (2− d− `) sin(θ)(1−d−`) (29)

Since d > 1 (the case of AdS2 is special and we won’t consider it), this diverges
generically as θ → 0.
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(c) The unit vector ni pointing outwards the sphere has a non-zero component nθ > 0.
To fix it, we impose the normalization

nµgµνn
ν = 1 =⇒ nθ = cos θ (30)

The induced metric on the fixed θ sphere boundary which we will denote by B is
obtained by setting dθ = dt = 0 in ds2, thus

ds2|B = tan2 θ hijdα
idαj (31)

where αi are d−1 angles on the unit sphere and hij is the metric on the unit sphere.
This implies that √

|g|B =
√
|h| tand−1 θ (32)

Combining both, this gives∫
Sd−1

dd−1α
√

|g|niTit =

∫
Sd−1

dd−1α
√
|h| tand−1 θ cos θ Tθt (33)

Note that tand−1 θ cos θ = tand−2 θ sin θ and sin θ → 1 as θ → π/2. Thus, the
condition that it vanishes at the boundary is simply

tand−2 θ Tθt → 0 (θ → π/2) (34)

Noting that gθt = 0, Rθt = 0 (this follows from the fact that AdSd+1 is maximally
symmetric, and thus Rµν ∝ gµν), the (θt) component of the stress tensor reads

Tθt = 2∂θφ∂tφ− β∇θ∇tφ
2 (35)

Using ∂tφ = −ω2φ and Γt
θt = tan θ is the only non-vanishing Christoffel with (θt)

lower indices we obtain

Tθt = −ω2∂θφ
2 + 2βω2∂θφ

2 − 2β tan θω2φ2 (36)

Thus, the condition can be written as

(tan θ)d−2[(1− 2β)∂θ + 2β tan θ]G2
+ → 0 (θ → π/2) (37)

We now investigate the behaviour of G+ when sin θ → 1, cos θ → 0. Let us define
the arguments of the hypergeometric 2F1 as

a ≡ ∆+ `+ ω

2
b ≡ ∆+ `− ω

2
c ≡ `+

d

2
(38)

One property of the hypergeometric is that, when c < a + b (which is true in our
case), the limit z → 1 reads

2F1(a, b, c, z) ∼ (1− z)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(39)

Thus as sin θ → 1,

G2
+ ∼ (sin θ)2`(cos θ)2∆(cos2 θ)2(c−a−b)Γ(c)

2Γ(a+ b− c)2

Γ(a)2Γ(b)2

∼ (cos θ)2(d−∆)Γ(c)
2Γ(a+ b− c)2

Γ(a)2Γ(b)2

(40)
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(we dropped sin θ ∼ 1). For ∂θG
2
+, one of the derivatives can hit cos θ generating

the term

∂θG
2
+ ∼ (cos θ)2(d−∆)−1Γ(c)

2Γ(a+ b− c)2

Γ(a)2Γ(b)2
(41)

Thus, the condition (36) (using (tan θ) ∼ (cos θ)−1) reduces to

(cos θ)d−2∆+1Γ(c)
2Γ(a+ b− c)2

Γ(a)2Γ(b)2
→ 0 (42)

Note that d− 2∆ + 1 ≤ −d+ 1, so (cos θ)d−2∆+1 → ∞. We thus need

Γ(c)2Γ(a+ b− c)2

Γ(a)2Γ(b)2
= 0 (43)

This is true whenever a or b is a pole of the gamma function (the gamma function
has no zeros), namely

a = −n or b = −n n = 0, 1, ... (44)

This implies
∆+ `± ω = −2n (45)

meaning
±ω = ∆+ `+ 2n (46)

(d) For ω to be real, we require ∆ to be real. This means

d2 + 4m2 > 0 =⇒ m2 ≥ −d2

4
. (47)

Plugging back the AdS radius R, this would give

m2R2 ≥ −d2

4
. (48)

This is known as the Breitenlohner-Freedman bound.

3. Lowest scalar energy state in AdS

(a) (optional part) The CFT generators are expressed in terms of the SO(d, 2) genera-
tors as

D = −J0,d+1, Mµν = Jµν , (49)
Pµ = Jµ0 + iJµ,d+1, Kµ = Jµ0 − iJµ,d+1, (50)

with

JMN = −i

(
XM

∂

∂XN
−XN

∂

∂XM

)
. (51)
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where XA are the embedding coordinates which in global coordinates read

X0 = R cos t cosh ρ, (52)
Xµ = RΩµ sinh ρ, (53)

Xd+1 = −R sin t cosh ρ. (54)

It’s easiest to express the derivative ∂/∂t in terms of the ∂/∂XA (and likewise for
∂/∂ρ and ∇µ) instead of working the other way around. For instance, we have

∂

∂t
=

∂XA

∂t

∂

∂XA
= −R sinh ρ

∂

∂X0
−R cosh t cosh ρ

∂

∂Xd+1
. (55)

But this is precisely

∂

∂t
= Xd+1 ∂

∂X0
−X0 ∂

∂Xd+1
= −Xd+1

∂

∂X0
+X0

∂

∂Xd+1
= iJ0,d+1, (56)

since X0 = −X0 and Xd+1 = −Xd+1. Hence −J0,d+1 = i∂t, as claimed.
Next, if we extend the Ωµ to cover all of Rd, we have

∂

∂Ωµ
=

XA

∂Ωµ

∂

∂XA
= R sinh ρ

∂

∂Xµ
, µ = 1, . . . , d, (57)

so more properly speaking, we have the Sd−1-covariant derivatives

∇µ = R sinh ρ

[
∂

∂Xµ
− ΩµΩ

ν ∂

∂Xν

]
(58)

which indeed obey Ωµ∇µ = 0. Consequently

Xµ
∂

∂Xν

= R sinh ρΩµ
∂

∂Xν
= Ωµ∇ν + ΩµΩνΩ

ρ ∂

∂Xρ
, (59)

so (since the second term is symmetric in µ ↔ ν)

Jµν = −i (Ωµ∇ν − Ων∇µ) = Mµν . (60)

Finally, we have

∂

∂ρ
=

∂XA

∂ρ

∂

∂XA
= R

[
cos t sinh ρ

∂

∂X0
+ Ωµ cosh ρ

∂

∂Xµ
− sin t sinh ρ

∂

∂Xd+1

]
.

(61)
We are aiming for an expression of the form JAB, expressed purely in terms of the
XA. As a first step, we can introduce the operators

Dµ = Ωµ
∂

∂ρ
+

1

tanh ρ
∇µ (62)

which are somewhat simpler: they can be recast as

Dµ = R

[
cos t sinh ρΩµ

∂

∂X0
+ cosh ρ

∂

∂Xµ
− Ωµ sin t sinh ρ

∂

∂Xd+1

]
, (63)
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= Xµ

(
cos t ∂

∂X0
− sin t

∂

∂Xd+1

)
+R cosh ρ

∂

∂Xµ
. (64)

Moreover
Ωµ tanh ρ

∂

∂t
= −Xµ

(
sin t

∂

∂X0
+ cos t ∂

∂Xd+1

)
. (65)

Using the identity R cosh ρ = −e±it(X0 ± iXd+1), we can therefore write

Dµ − iΩµ tanh ρ
∂

∂t
= eit

[
Xµ

(
∂

∂X0
+ i

∂

∂Xd+1

)
− (X0 + iXd+1)

∂

∂Xµ

]
, (66)

that is to say

−ie−it

(
Dµ − iΩµ tanh ρ

∂

∂t

)
= Jµ0 + iJµ,d+1. (67)

Likewise

Dµ + iΩµ tanh ρ
∂

∂t
= e−it

[
Xµ

(
∂

∂X0
− i

∂

∂Xd+1

)
− (X0 − iXd+1)

∂

∂Xµ

]
, (68)

that is to say

−ieit
(
Dµ + iΩµ tanh ρ

∂

∂t

)
= Jµ0 − iJµ,d+1. (69)

This agrees precisely with the formulas from the exercise.

(b) The requirement Dφ = ∆φ gives

i
∂

∂t
φ = ∆φ =⇒ φ(r, t,Ω) = e−i∆tφ0(r,Ω) (70)

The requirement Kµφ = 0 implies that ∇µφ = 0 (independent of the Sd−1 angular
coordinates), and

(−∂ρ − i tanh ρ∂t)φ0 = 0 =⇒ ∂ρφ0 = −∆ tanh ρ φ0 (71)

This is solved by

φ0 ∝ e−∆ log cosh ρ =⇒ φ ∝
(

e−it

cosh ρ

)∆

(72)

(c) The change of variables between the two coordinates system is tanh ρ = sin θ =⇒
1

cosh ρ
= cos θ. So we obtained that a scalar operator φ which is a primary state

of the CFT algebra with dimension ∆ is expressed as

φCFT,primary ∝ e−i∆t(cos θ)∆ (73)

whereas in the last exercise we solved the massive scalar fields in AdS and
obtained that φ = e−iωtG+(θ)Y`(Ω). Choosing ` = 0, ω = ∆m (lowest energy
state) and Y`=0 ∝ 1 the solutions reads

φAdS,lowest energy state ∝ e−i∆mt(cos θ)∆m
2F1(1, 0,

d

2
, sin2 θ) = e−i∆mt(cos θ)∆m (74)

where ∆m in this exercise was defined as ∆m ≡ d
2
(1 +

√
1 + 4m2). We see that the

two are the same, upon identifying the CFT dimension ∆ with the quantity ∆m.
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